
U.S. Department of Energy

Preprint
UCRL-JC-134897

Climate Data Management
System

R. Drach

This article was submitted to
American Meteorological Society
11 th Symposium on Global Change Studies
Long Beach, CA
January 9-l 4,200O

July 13,1999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Climate Data Management
System

Robert Drach

Program for Climate Model Diagnosis and
Intercomparison

Lawrence Livermore National Laboratory

March 1999

CHAPTER 1 Introduction 7
Overview 7
Basic Concepts 7

Variables 8
Container classes: Databases, Datasets, and CdmsFiles 8
Structural classes: Axes and Grids 9
Xlinks 10

Partitioned Datasets 10
File Template 11
Partition I2

CHAPTER 2 CDMS Python Application
Programming Inteeace 13

Overview 13
Python types used in CDMS 14

A first example 15
cdms module 17

cdms moduleficnctions 18
Example: Searching a list of datasets 27
Class Tags 27

CdmsObj 29
Attributes common to all CDMS objects 29

Axis 30
Getting and setting attributes 30
Axis Internal Attributes 30
Axis Constructors 31
Axis Methods 32
Axis Slice Operators 37

CdmsFile 38
CdmsFile Internal Attributes 38
CdmsFile Constructors 39
CdmsFile Methods 39
CDMS Datatypes 41

Database 42
Dataset 42

Dataset Internal Attributes 42

Dataset Constructors 43
Open Modes 43
Template Specifiers 44
Dataset Methods 45

RectGrid 46
RectGrid Internal Attributes 46
RectGrid Constructors 46
RectGrid Methods 47

Variable 52
Variable Internal Attributes 52
Variable Constructors 53
Variable Methods 54
Variable Slice Operators 57

Examples 58
Coordinate Intervals used in getRegion 58

CHAPTER 3 Regridding data 67
Overview 67
regrid module 68
regridder functions 69

Regridder Constructor 69
Regridderfunction 71

Examples 72

CHAPTER 4 Plotting CDMS data in Python 77
Overview 77
Examples 77

Example: plotting a horizontal grid 77
Example: using plot keywords. 79
Example: plotting a time-latitude slice 79
Example: plotting subsetted data 80

plot method 80
plot keywords 81

CHAPTER 1 Introduction

1.1 Overview

The Climate Data Management System is an object-oriented data
management system, specialized for organizing multidimensional, gridded
data used in climate analysis and simulation.

1.2 Basic Concepts

The building blocks of CDMS are variables, container classes, struc-
tural classes, and links. All gridded data stored in CDMS is associated with
variables. The container objects group variables and structural objects. Vari-
ables are defined in terms of structural objects.

Most CDMS objects can have attributes, which are scalar or one-dimen-
sional metadata items. Attributes which are stored in the database, that is
are persistent, are called external attributes. Some attributes are internal:
they are associated with an object but do not appear explicitly in the data-
base.

Climate Data Management System 7

Introduction

1.2.1 Variables
Most of the data stored in CDMS has the form of multidimensional

data arrays. A variable is a persistent, multidimensional array, together with
associated metadata. A persistent variable retains its value independent of
an application.

A variable may be viewed as a function which maps a multidimensional
domain onto a range of values. The domain of a variable consists of an
ordered tuple of axes and/or grids which define the shape and spatial orien-
tation of the variable.

1.2.2 Container classes: Databases, Datasets, and
CdmsFiles

Variables are contained in datasets: A dataset is a collection of vari-
ables and associated structural objects. All objects in a dataset are identified
by a string ID, unique within the dataset.

The data contained in a dataset generally is stored in one or more physical
datafiles. An additional ASCII metafile describes how the files are orga-
nized and named. In a climate simulation application, a dataset usually rep-
resents the data generated by one run of a general circulation or coupled
ocean-atmosphere model.

The metafile associated with a dataset can contain information which is
additional to that in the actual data files. The format of the metafile is
designed for readability, ease of extension, and integration with Web brows-
ers. It can be used to enforce naming standards, by ‘aliasing’ variable
names. The format of the metafile is based on the World Wide Web Council
standard XML language (see Chapter 5).

A Database is a collection of datasets and other CDMS objects. A Data-
base:

l provides naming mechanisms for accessing and searching its contents indepen-
dent of local file names.

8 Climate Data Management System

Basic Concepts

l may be associated with a server, local or remote. A given site would ordinarily
have only a small number of Databases, perhaps one public and a few private
ones.

l provides a facility for standardization of data. The objects contained in the Data-
base can be required to adhere to a metadata standard such as GDT. This pro-
vides assurance that data access will be robust.

The process of copying external data into a Database is known as the ingest
process. Ingesting data into CDMS involves verifying that data adheres to a
standard. Mechanisms are provided for adding metadata to meet that stan-
dard. The cdingest utility is used to ingest data into CDMS (See Section
6.1).

CDMS permits access to data files which are ‘outside’ a database. In
CDMS, a file is termed a CdmsFile. CdmsFiles are similar to datasets, in
that they are containers for variables, axes, and grids. However, not all
CDMS objects can be stored in CdmsFiles. Also, the standardization associ-
ated with the ingest process may not apply to a CdmsFile. Data may be read
from a variety of self-describing file formats, including netCDF, HDF,
GRIB, and PCMDI DRS formats.

1.2.3 Structural classes: Axes and Grids

Structural objects are used in the definition of variables. They define
how a variable is oriented in space and time. For example, suppose that a
variable is a function of time, longitude, and latitude. The domain of the
variable consists of an ordered tuple of uxs (time, longitude, and latitude).
The domain ordering corresponds to the physical ordering of data: the first
axis is ‘slowest varying’.

An axis is a one-dimensional coordinate vector. Within a dataset, an axis
may be shared by more than one variable. An axis may identified as spatio-
temporal: a time, vertical level, latitude, or longitude axis.

CDMS allows generalization of domains to include grids. In spatial terms, a
grid is a horizontal partitioning of all or a portio,n of the Earth’s surface. A
grid which can be represented as a pair of axes (latitude, longitude) is called
a RectGrid. For example, if the domain of a variable is (time, latitude, longi-

Climate Data Management System 9

Introduction

1.3.2 Partition

One more piece of information is required to fully describe the
dataset partitioning: the partition attribute. Each axis which is partitioned
has a .partition attribute, which is a list of the start and end indices of each
axis partition.

FIGURE 1. Partitioned axis

Coordinate value

0 1 2 . . . 12 13 . . . 23 24 25 . . . 36
Index value

Figure 1 shows a time axis, representing the 36 months January, 1980
through December, 1982, with December 1981 missing. The first partition
interval is (0,12), the second is (12,23), and the third is (24,36), where the
interval (ij) represents all indices k such that i <= k < j. The .partition
attribute for this axis would be the list:

co. 12‘ 12, 23, 24, 361

Note that the end index of the second interval is strictly less than the start
index of the following interval. This indicates that data for that period is
missing.

12 Climate Data Management System

L

CHAPTER 2 CDA4S Python
Application
Programming InterJace

2.1 Overview

This chapter describes the CDMS Python application programming
interface (API). Python is a popular public-domain, object-oriented lan-
guage. Its features include support for object-oriented development, a rich
set of programming constructs, and an extensible architecture. CDMS itself
is implemented in a mixture of C and Python. In this chapter the assumption
is made that the reader is familiar with the basic features of the Python lan-
guage.

Python supports the notion of a module, the biggest program unit in the lan-
guage. Modules group together associated classes and methods, and provide
a separate namespace. The import command makes the module accessible
to an application. This chapter documents the cdms module.

The chapter sections correspond to the CDMS classes. Each section
contains tables describing the class internal (non-persistent) attributes, con-
structors (functions for creating an object), and class methods. Method
datatypes may be any of the Python types:

Climate Data Management System 13

CDMS Python Application Programming Interface

Table 2.1 Python types used in CDMS

5Pe Description

14 Climate Data Management System

A first example

2.2 Ajirst example

The following Python script reads January and July monthly tempera-
ture data from an input dataset, averages over time, and writes the results to
an output file. The input temperature data is ordered (time, latitude, longi-
tude).

1
2
3
4
5
6
I
8
9

10
11
12

13

14
15
16
17
18
19
20

#!/usr/local/bin/Dython
import C&IS, Numeric
jones = cdms.openDataset(8/pcmdi/cdms/obs/jones~mo.zcnl','r')
tasvar = jones.variablesI'tas'l
jans = tasvar[0::121
julys = tasvar[6;:121
janavg = Numeric.avg.reduce(jans)
julyavg = Numeric.avg.reduce(julys)
out = cdms.createDataset('janjuly.nc')
grid = tasvar.getGrid()
outgrid = out.copyGrid(grid)
janvar = out.createVariable('tas-jan', cdms.CdFloat,

(outgrid,))
julyvar = out.createVariable('tas-jul.', cdms.CdFloat,

(outgrid,) 1
janvar.units = julyvar.units = nKl'
janvar.long-name = **mean January surface temperature"
julyvar.long-name = "mean July surface temperature"
janvar [: 1 = janavg
julyvarl:] = julyavg
jones.closeO
out.close()

Line Notes

2 Makes the CDMS and Numeric modules available.

3 Opens the input dataset, read-only. The .~ml file is an ASCII file
which describes the data files in the dataset. The result jones is a
dataset object.

Climate Data Management System 15

CDMS Python Application Programming Interface

Line Notes

4 Gets the surface air temperature variable. \ tas r is the name of the
variable in the input dataset. jones .variables is a Python dictio-
nary, which maps the variable name (ttas’) to the variable object
(tasvar).

5

6 Reads all July data into a Numeric array julys.

7 Averages jans across the first array dimension, time. The result is a
function of latitude and longitude.

8

9

10

11

Reads all January monthly mean data into a Numeric array jans.
Variables can be sliced as if they were Numeric arrays. The slice
operator to : : 12 I means ‘take every 12th slice from dimension 0,
starting at index 0 and ending at the last index.’ If the stride 12 were
omitted, it would default to 1.

Note that the variable is actually 3-dimensionaLSince no slice is
specified for the second or third dimensions, all values of those
dimensions are retrieved. The slice could also have been written
[0::12. : , :I.

Also note that the data may be read from multiple data files, depend-
ing on the organization of the dataset. CDMS opens the needed data
files, extracts the appropriate slices, and concatenates them into the
result array as necessary.

Averages julys across time.

Creates a new netCDF output file named 'janju1y.m to hold the
results.

Gets the grid object grid associated with tasvar, contained in the
input dataset.

Copies grid to the output file. outgrid is a grid object contained in
the output file.

16 Climate Data Management System

cdms module

2.3 cdms module

The cdms module is the Python interface to CDMS. The objects and
methods in this chapter are made accessible with the command:

import cdms

The functions described in this section are not associated with a class.
Rather, they are called as module functions, e.g.,

Line Notes

12 Creates a variable janvar in the output file, as a function of the out-
put grid. Its identifier in the output file is the string -tas-jan'. The
last argument is a tuple of the grids and/or axes which define the
domain of the variable. Note that as yet no data has been written to
the file.

13

14

17

18 Writes July average data to the output file.

19 Closes the input dataset.

20 Closes the output file.

Creates a new variable julwar in the output file.

Creates a .units attribute for both variables, and writes the string
value 8~’ to the output file. There is nothing special about .units;
any attribute can be created and written in similar fashion.

Global attributes are written by setting an attribute of the file object.

Writes the January average data to the output file. Setting a slice of a
variable writes data to that variable. In this case, the slice [:] refer-
ences all data for the variable.

Climate Data Management System 17

CDMS Python Application Programming Interface

file = cdms.createDataset(‘samgle..ncr~

Table 2.2 cdms module functions

Definition

18 Climate Data Management System

cdms module

Table 2.2 cdms module functions

We Definition

Climate Data Management System 19

CDMS Python Application Programming Interface

Table 2.2 cdms module functions

The Definition

20 Climate Data Management System

cdms module

Table 2.2 cdms module functions

Type Definition

Climate Data Management System 21

CDMS Python Application Programming Interface

Table 2.2 cdms module functions

Tw Definition

22 Climate Data Management System

cdms module

Table 2.2 cdms module functions

Type Definition

Climate Data Management System 23

uwwa add

suoymn4 alnpow srup3 z-z alqel

cdms module

Table 2.2 cdms module functions

5w Definition

Climate Data Management System 25

waishs luaura8vuvH viva apnq~ 92

wwva aa4

suo!pun~ alnpow srup3 z’z alqel

aw$~a&ul 6UyUUIeJ60Jd uoymyddw UOL& spJa3

cdms module

Table 2.3 Class Tags

Taa Class

2.3.1 Example: Searching a list of datasets

Given the following definitions:

Print a list of objects returned from a search
def printmatches(title,matches):

print '\n',title
for obj in matches:

if hasattr(obj,'uri'):
path = obj.&i

else:
path = obj.parent.id

print path, obj.id

Return the shape of an object's grid
def gridshape(obj):

latlen = lonlen = 0
for axis,start,length,true-length in obj.clomain:

if axis.isLatitudeO: latlen = length
if sxis.isLongitudeO: lonlen = length

return (latlen,lonlen)

The list of datasets to search
paths = I

~/pcmdi/drach/xml/sample/obs/nceD~reanalysis~6h.xml~,
'/pcmdi/drach/~l/sample/obs/ncep_reanalysis_6h_multi.xml',
'/pcmdi/drach/xml/ssmDle/cmip2/ccc/perturb.xml*,
'/pcmdi/drach/cdms/src/Dython/test/testgdtrel.nc'
. J

Generate a list of dataset objects
datasets = map(cdms.openDataset,paths)

Climate Data Management System 27

CDMS Python Application Programming Interface

Find objects with bounds defined:

matches = cdms.searchPattern(datasets,".*",*bounds*~)
printmatches('Objects with boundaries',matches)

List all COARDS datasets:

matches =
cdms.searchPattern(datasets,~~COARDS","Conventions~,"dataset")

printmatches(8Coards datasets',matches)

Find all axes with gaps:

f = lsmbda obj:obj.length!=obj.partition-length
matches = cdms.searchPredicate(datasets,f."axisw)
printmatches('Axes with gaps',matches)

Find all datasets with a variable named “hfss”:

f = lambda obj:obj.variables.has-key("hfss")
matches = cdms.searchPredicate(datasets,f,"dataset*)
printmatches('Datasets with variable nhfss'l',matches)

Find all variables on 32x64 grids:

f = lambda obj: gridshape(obj)==(32,64)
matches = cdms.searchPredicate(datasets, f, WariableS1)
printmatches('Variables on 32x64 grids',matches)

Find all axes with length greater than 1000:

f = lambda obj: obj.length>lOOO
matches = cdms.searchPredicate(datasets, f, flaxisM)
printmatche.s('Axes with length>lOOO',matches)

Find all axes with length one:

f = lambda obj: len(obj)==l
matches = cdms.searchPredicate(datasets, f, "axis")
printmatches('Axes with length l',matches)

2s Climate Data Management System

CdmsObj

Find boundary arrays:

matches = cdms.matchPattern(datasets, Mbounds.*m)
printmatches('Objects with boundaries',matches)

2.4 CdmsObj

A CdmsObj is the base class for all CDMS database objects. At the
application level, CdmsObj objects are never created and used directly.
Rather the subclasses of CdmsObj (Dataset, Variable, Axis; etc.) are the
basis of user application programming.

All objects derived from CdmsObj have a special attribute .attributes. This
is a Python dictionary, which contains all the external (persistent) attributes
associated with the object. This is in contrast to the internal, non-persistent
attributes of an object, which are built-in and predefined.

Example: get a list of all external attributes of obj.
extatts = obj.attributes.keysO

Table 2.4 Attributes common to all CDMS objects

Climate Data Management System 29

CDMS Python Application Programming Interface

All attributes may be accessed and set using the Python dot notation (‘.‘)

Table 2.5 Getting and setting attributes

5Pe Definition

2.5 Axis

An Axis is a one-dimensional coordinate object.

An Axis is contained in a Dataset. Setting a slice of an Axis writes data to
the Dataset, referencing an Axis slice reads data from the Dataset. Axis
objects are also used to define the domain of a Variable.

An axis in a CdmsFile may be designated the ‘unlimited’ axis, meaning that
it can be extended in length after the initial definition. There can be at most
one unlimited axis associated with a CdmsFile.

Table 2.6 Axis Internal Attributes

We
Dictionary

Name

attributes

Definition

External attribute dictionary.

30 Climate Data Management System

Axis

Table 2.6 Axis internal Attributes

5Pe Name Definition

Table 2.7 Axis COnStrUCtOrS

Climate Data Management System 31

CDMS Python Application Programming Interface

Table 2.8 Axis Methods

Method Definition

32 Climate Data Management System

Axis

Table 2.8 Axis Methods

Climate Data Management System 33

CDMS Python Application Programming Interface

Table 2.8 Axis Methods

lboe Method Definition

34 Climate Data Management System

Axis

Table 2.8 Axis Methods

Tvoe Method Definition

Climate Data Management System 35

CDMS Python Application Programming Interface

Table 2.8 Axis Methods

Qpe Method Definition

36

Axis

Table 2.8 Axis Methods

Tw Method Definition

Table 2.9 Axis Slice Operators

Slice Definition

Climate Data Management System 37

CDMS Python Application Programming Interface

Table 2.9 Axis Slice Operators

Slice Definition

Example: A longitude axis has value [O.O, 2.0, 358.01, of length 180.
Map the coordinate interval -5.0 <= x < 5.0 to index interval(s), with wrap-
around. The result index interval 178<=k<183 wraps around, since
180483. This is equivalent to the two index intervals 178<=kcl80 and
O<=k<3

> axis.isCircularO
1
> axis.mapInterval((-5.0.5.0))
(178,183)
>

2.6 CdmsFile

A CdmsFile is a physical file, accessible via the cdunif interface.
netCDF files are accessible in read-write mode. All other formats (DRS,
HDF, GrADS/GRIB, POP, QL) are accessible read-only.

Table 2.10 CdmsFile Internal Attributes

Twe Name Definition

Climate Data Management System

CdmsFile

Table 2.11 CdmsFile Constructors

Table 2.12 CdmsFile Methods

Definition

Climate Data Management System 39

aqJawq 6U!LUWJf%Jd Uo!wwJdv ‘JW’fd SNQ3

CdmsFile

Table 2.12 CdmsFile Methods

5pe Definition

Table 2.13 CDMS Datatypes

CDMS
Datatype

CdC+

Cdl%uble

CdFloat

CdInt

Definition

character ‘;, ‘,.:;

double-precisioli,,Roatin&point I.

floating-point

integer

Climate Data Management System

CDMS Python Application Programming Interface

Table 2.13 CDMS Datatypes

CDMS
Datatype Definition

2.7 Database

2.8 Dataset

A Dataset is a virtual file. It consists of a metafile, in CDML/XML repre-
sentation, and one or more data files.

Table 2.14 Dataset Internal Attributes

Name Summary

42 Climate Data Management System

sapw uado 9L.z wu

CDMS Python Application Programming Interface

2.9 RectGrid

A RectGrid is a two-dimensional, horizontal, rectilinear grid. A rectGrid
can be defined in terms of a pair of axes, one longitude and one latitude. A
two-dimensional, logical mask array may optionally be associated with a
rectGrid.

Table 2.19 RectGrid Internal Attributes

5Pe Name Definition

Table 2.20 RectGrid Constructors

46 Climate Data Management System

RectGrid

Table 2.21 RectGrid Methods

Climate Data Management System 47

CDMS Python Application Programming Interface

Table 2.21 RectGrid Methods

Qpe Definition

48 Climate Data Management System

RectGrid

Table 2.21 RectGrid Methods

QPe Definition

Climate Data Management System

CDMS Python Application Programming Interface

Table 2.21 RectGrid Methods

lbe Definition

Climate Data Management System

RectGrid

Table 2.21 RectGrid Methods

5pe Definition

Climate Data Management System

CDMS Python Application Programming Interface

Table 2.21 RectGrid Methods

5Pe Definition

2.10 Variable

A Variable is a multidimensional data object. The domain of a variable is
defined in terms of Axis and Grid objects.

A Variable is contained in a Dataset. Setting a slice of a Variable writes data
to the Dataset, and referencing a Variable slice reads data from the Dataset.

Table 2.22 Variable Internal Attributes

Type Name ‘Definition

52 Climate Data Management System

Variable

Table 2.22 Variable Internal Attributes

Name Definition

Table 2.23 Variable Constructors

Climate Data Management System 53

CDMS Python Application Programming Interface

Table 2.24 Variable Methods

Definition

54 Climate Data Management System

Variable

Table 2.24 Variable Methods

TvDe Definition

Climate Data Management System 55

CDMS Python Application Programming Interface

Table 2.24 Variable Methods

56

Type Definition

Example: Get a region of data.

Climate Data Management System

Variable

Variable ta is a function of (time, latitude, longitude). Read data corre-
sponding to all times, latitudes -45.0 up to but not including +45.0, longi-
tudes 0.0 through and including longitude 180.0:

data = ta.getRegion(*:', (-45.0,45.0), (0.0, 180.0, ‘cc'))

In the previous example, assume that times are represented as relative times
with units “days since 1979-01-01”. Read all data for 1980:

import cdtime

Convert absolute times 1980-01-01, 1981-01-01 to
relative times with the correct units.

t80 = cdtime.comptime(l980).torel(Ways since 1979")
t81 = cdtime.comptime(l981).torel("days since 1979")

Read the data for 1980. The interval represents all
times t such that t80 x= t < t81. Also note that
intervals for the trailing dimensions latitude
and time can be omitted.

data = ta.getRegion((t801t81))

Table 2.25 Variable Slice Operators

Climate Data Management System 57

CDMS Python Application Programming interface

Table 2.26 Coordinate intervals used in getRegion

Interval Definition ExamDIe

2.11 Examples

In this example, two datasets are opened, containing surface air tem-
perature (‘tas’) and upper-air temperature (‘ta’) respectively. Surface air
temperature is a function of (time, latitude, longitude). Upper-air tempera-
ture is a function of (time, level, latitude, longitude). Time is assumed to
have a relative representation in the datasets (e.g., with units “months since
basetime”).

Data is extracted from both datasets for January of the first input year
through December of the second input year. For each time and level, three
quantities are calculated: slope, variance, and correlation. The results are
written to a netCDF file. For brevity, the functions corrCoefSlope and
removeSeasonalCvcle are omitted.

import c&m, Numeric

58 Climate Data Management System

Examples

from cdtime import l

Write slope, correlation, and variance variables
def writeNetCDF(lons,lats,levs,file~name,title,b,c,v):

file = cdms.createDataset(filepame + '.nc')
file-title = title
loxvar = file.createAxis(,longitude', ions)
ion-var.units = "degrees-east-
lat-var = file.createAxis(81atitude', l&s)
lat-var.units = "degreesporth-
lev-var = file.createAxis('level',levs)
lev-var.units - 'rub'

foo - file.createVariable('sloDe', cdms.CdDouble, (lev-var. latpar,
ion-var))

fool:] = b
foo = file.createVariable('correlation', cdms.CdDouble, (lev-var. lat-var.

ion-var))
foo[:] = c
foo = file.createVariable('variance', cdms.CdDouble, (lev-var. lat-var.

ion-var))
fool:] = v
file.close()

def IUaDTimeS(yearl, year2, units, calender):
time1 - comptime(yearl,l).torel(units,calendar).value
time2 - comptime(year2,12).torel(units,calendar).value
return time1,time2

Calculate variance, slope, and correlation of surface air tempature
with upper air temperature
by level, and save to a netCDF file. 'DathTa' is the location of
the CDMS dataset containing ta, 'DathTas‘ is the file with contains tas.
Data is extracted from January of year1 through December of year2.
def ccSlopeVarianceBySeasonFiltNet~pathTa,pathTas,yearl,year2):

0 2

0 3

Open the files for ta and tas

0 4 fta = cdms.oDenDataset(pathTa)
ftas = cdms.oDenDataset(pathTas)

Get upper air temperature and axes

0
taobj - fta.variables['ta'l

5 levs = taObj.getLevel()[:l
lats = taObj.getLatitude() [sl
lons - taObj.getLongitude() [:I

0
Surface temperature times

6 timeobj = ftas.axest'time'l
calendar = timeObj.getCalendarO
if calendar--None: calendar=NoLeapCalendar

Get the timepoints corresponding to January of yearl,
and December of year2.
timel, time2 = mapTimes(yearl,year2,timeObj.units,calendar)

0
Get the surface temperature for the closed interval [timel,time21

7 il.12 = timeObj.mapInterval((timel,time2),'cc')
tas = ftas.variables['tas'l[il:i21

assert time-bounds101 == 1 and time-bounds[l] == 12

Climate Data Management System

CDMS Python Application Programming Interface

0 8

cc . Nunmric.zeros(~len(levs~,tas.sha~e~ll,tas.sha~e~2l~, NumSric.Float)
b = NumSric.zeroS(~len~levs~,taS.shaDe~ll,tas.shaDet2l~, Numeric.Float)
v = NumSric.zeros(~len(levs~,taS.sha~etll,taS.shape~2l~, NumSric.Float)

Remove seasonal cycle from surface air temperature
tas - removeSeasonalCycle(tas)

Get correct indices for ta
timeobj = fta.a%es['timS'l
calendar = timObj.getCalendarO
if calendar==Nona: calendar=cdtime.NoLeapCalendar
timel, time2 - ma~Times(yearl,year2,timeObj.units,calendar)
il,i2 - timSObj.mapInterval((timel,time2),'cc'f

For each level of air temperature, remove seasonal cycle
from upper air temperature, and calculate Statistics
for ilev in range(len(levs)):

print ‘level = ',ilRV, levs[flevl
ta = taObj[il:i2,ilevl
ta.shaDe - taS.ShapS # Ensure that the arrays conform
ta = removeseasonalCycle~ta)
cc[ilevl, brilevl = corrCoefSlope(tas ,ta1
v[ilevl - Numeric.add.reduce(ta l *2)/(l.O*ta.sha~eIOl)

file-name = 'CC-B-V-ALL'
title = 'filtered'
writSNStCDF(lons,latS,lSvs,file~nSm,titlS,b,cc,v)

0 9 if ~name~=='~main~':
PathTa = '/pQndi/cBms/Sample/ccm5ample_ta.~l'
QathTas - '/~cmdi/c8ms/samgle/c~~l~~as.xml'
Process Jan80 through De&l
ccS1o~eVarianceBySeasonFi1tNet~pathTa.pathTas.1980.1981)

Notes:

1. Three modules are imported, cdms, Numeric, and cdtime. Numeric imple-
ments array functions. cdtime supports time arithmetic,

2. The writeNetCDF function creates a new netCDF file, and writes three variables
to the file: b (slope), c (correlation), and v (variance). Ions, lats, and 1~s are
1-D arrays for longitude, latitude, and level axes, respectively.

The file is created with the createDataset function. Since the file extension is
not .X~I or .CM, a CdmsFile is created.

Setting file.title creates and sets a global attribute in the file.

Three axes are created via createAxis, and the units attributes are set.

The three variables are created via createvariable. The domain is specified as a
list of axis objects created previously.

60 Climate Data Management System

Examples

The line foe [: 1 = b writes the array b to variable foo in the file.

It is important to close the file, to ensure that all data is written.

3. ma~Times returns a tuple of relative time VdUeS (timel, timea), where:
- time1 is January of yearl, and
- time2 is December of year2.
comptime is a cdtime function which creates a component time. tore10 trans-
lates to the appropriate relative units.

4. The two datasets are opened via openDataset(). Eta is the dataset containing
upper-air temperature, and ftas is the dataset containing surface air tempera-
ture.

5. The variable taObj is retrieved using the predefined dataset attribute .vari-
ables. This is a dictionary with the variable ids as keys.

getLevel returns the level (vertical dimension) axis for ta. The slice operator
I:] reads the entire array, so that levs is a Numeric array containing the levels.
The same is true of latitude and longitude.

6. Datasets have a . axes attribute, which is a dictionary of all Axes in the file. It is
assumed that the time axis has id ‘time’, so timeObj is the time axis. A better
approach is to use the getTime() function to retrieve the time axis.

calendar is the cdtime calendar associated with the time axis. If no calendar is
specified in the dataset, it is assumed to be the Gregorian calendar.

7. The mapInterval function maps the coordinate interval (tirnel, timea) to an
index interval. The optional \CC' indicator specifies that the interval is closed on
both ends, that is , time1 and time2 are both contained in the interval. If the
indicator were omitted, it would default to n CO', meaning closed on the left,
open on the right.

mapInterval returns indices (ii, i2), which represents all integers k such that
il<=k42. In other words, the closed coordinate interval ttimel, timea, ‘cc’)
maps to the half-open index interval t il, i2) .

This could also have been accomplished more directly using the getRegion
function, which takes an argument list of coordinate intervals. The following
obtains the same result:

tasObj = ftas.variables['tas'l
tas = tasObj.getRegion((timel,time2,'cc'))

Climate Data Management System 61

CDMS Python Application Programming Interface

0 10

8. ta is read using a multidimensional slice operator. Since ta is assumed to be a
function of (time, level, latitude, longitude), the operation
ta = taObj[il:i2,ilevl

reads times with indices il through ia-1, level ilev, all latitudes, all longitudes.
9. This is the main routine of the script. pathTa and PathTas are dataset paths

which reference the XML metafiles. Data is processed from January 1980
through December 198 1.

In the next example, the pointwise variance of a variable over time is calcu-
lated, for all times in a dataset. The name of the dataset is input, all variables
in the dataset are printed, then the name of the variables is selected. The
variance is then calculated and plotted via the vcs module. -

#Il~cmdildrachlcdatfD~ythonl5lDython

Calculates gridpoint total variance
from an array of interest

from Numeric import *
import cdms

AxisNotTim.3 = 'First axis is not time, variable:'

Create a netCDF file, writs v(lon,lat)
def writenc(filenams,lons,lats,v):

f = cdms.createDataset('calcVar.nc~)
loll = f.createAxis('longituds',lons)
lat = f.createAxis('latituds',~ats)
varvar = f.createVariable('variance', cdms.CdDouble, (lat,lon))
varvart:] = v
f.closeo

Generate a plot of a 2-D array 'a='.
'w' is the VCS window object returned from vcs.init()
'xar' and 'yar' are the x-axis and y-axis coordinates.
'mane', 'xmms', and 'ynams' ars the names of the array, x-axis, and y-axis.
'xbounds' and 'ybounds' are boundary arrays.
def DlOt2d (w,ar,xar,yar,aname,xname,yname,Units=None,

xbounds=None,ybounds=None):
if xbounds is None:

xbounds = [1.5*xar[Ol-0.5*xar[lll + ((xar[O:-ll+xar[l:l)/2.O).tolist() +
[1.5*xar[-11-0.5*xar[-211

if ybounds is Nones
ybounds = [l.S*yar[Ol-O.S*yar[lll + ~~yar~0:-1l+yartl:l~/2.0~.tolistO +

[l.S*yar[-ll-0.5*yarC-211
ar.setdimattribute(O,'values*,yar.tolistO)
ar.setdimattribute(l,'values',xar.tolistO)
ar.setdimattribute(O,'bounds',ybounda)
ar.setdimattribute(l,'bounds',xbounds)
ar.setdimattribute(O.'name'.yname)
ar.setdFmattribute(l,'name',xname)

62 Climate Data Management System

Examples

if units is not None:
ar.createattribute('units')
ar.setattribute('units',units)

ar.setattribute('name',aname)
W.plot(ar,'AMIP')

Wait for return in an interactive window
def DaUSS():

print 'Hit return to CO,.LtinUS: ',
line - sys.stdin.readline()

Calculate pointwise variance Of variable over time
Returns the variance and the number of points
for which the data is defined, for each grid point

def calcVar(var):

0
Check that the first axis is a time axis

11 firstaxis - var.domain[Ol 101
if not firstaxiS.isTime():

raise AxisNotTime, var.id

Read the entire variable
x = vart:l

n = l.*avg.count(x)
sumxx- addmissing.reduce(x"x)
sumx - addmissing.raduce(x)
variance = (nfs- - (sumx * sumx))/(n * (n-1.))

return variallce,n

if ~name~=='~main~':
import vcs, sys

print 'Enter dataset Path [/~cmdi/cdms/sample/obs/erbsmo.xmll: ',
path - string.strip(sys.stdin.readline())
if path==": ~ath='/~cmdi/cdms/SamplefobS/erbs_mo.xml'

men the dataset
dataset = cdms.openDataset(path)

Select a variable from the dataset
print 'Variables in file:',path
varnames = dataset.variables.keys()
varnames.sort()
for vanlame in vSrnSmeS:

var = dataset.variableS[varnamel
if hasattr(vSr,'long_name'):

long~name = var.long-name
elif hasattr(var,'title'):

1ong~nSme = var.title
else:

long-name = '1'
print *%-10s: %s~%(varnme,long-name)

print 'Select a variable: I,
varname = string.strip(sys.stdin.readline 0)
var - dataset.variables[varnamel

Calculate variance
variance,n = calcvar(var)
dataset.close()

Climate Data Management System

CDMS Python Application Programming Interface

Get longitude and latitude arrays

0

x = var.getLongitude()[:l
13 y = var.getLatitude()t:l

Save the data
writenc(‘calcVar.nc’,x,y,variance)

0
14

Plot variance
w=vcs.init()
W.SStCOlo,xIaD('default')
if hasattr(var,'units'):

units = v*r.units
else:

units = None
DlotZd(w.variance,x.y.vamame+'

variance',810ngituden,'latitude','(%s)A2'%units)
DBUSB (1
w.claar()
plot2d(w,n,x,y,varname+' IlDtS defined','longitude','latitude')
Pause ()
w.clear()

The result of running this script is as follows:

% ca1cVar.D~
Enter dataset path [/pcmdi/cdms/san&e/obs/erbs_mo.xmll:

variables in file.: /Dcmdi/cdms/sample/obs/~rbs_mo.xml
albt : Albedo TOA I%]
albtcs : Albedo TOA clear sky (%I
rlcrft : LW Cloud Radiation Forcing TOA (W/m*21
rlut : Lw radiation TOA (OLR) [W/m*21
rlutcs : LW radiation upward TOA clear sky [W/m*21
rscrft : SW Cloud Radiation Forcing TOA [W/m*21
rsdt : SW radiation downward TOA [W/m*21
rsut : SW radiation UDward TOA [W/m*21
rsutcs : SW radiation upward TOA clear sky (W/m*21
Select a variable: albt

<The variance is plotted>

Hit return to continue:

<The number of points is plotted>

Notes:

10. The plot2d function creates a boxfill plot of the 2-D array (LI in window W. The
setdimattribute and setattribute functions are PCMDI Numeric extensions.

11. The domain of a variable is a list [eleml, elem2, elemn] where each element
is a tuple of the form (axis,start,length,true-length). In this example,
var. domain to I is the domain element for the first axis, and var .domain [o I [o I

is the first axis object.
12. The dataset is opened via openDataset().

Climate Data Management System

13. var -getLongitude () gets the longitude axis. The slice operator [:] reads the
associated array.

14. The variance is plotted first, then the number of defined points is plotted.

Climate Data Management System 65

CDMS Python Application Programming Interface

Climate Data Management System

CHAPTER 3 Regrinding data

3.1 Overview

This chapter describes how to interpolate gridded CDMS data to
another horizontal grid, within Python.

Regridding data is a two-step process:

l Given an input grid and output grid, generate a regridder function.
l Call the regridder function on a Numeric array, resulting in an array defined on

the output grid.

The following example illustrates this process. The regridder function is
generated at line 9, and the regridding is performed at line 10:

1 #!/usr/local/bin/python
2 import cdms
3 from regrid import Regridder
4 f = cdms.openDataset(~/pcmdi/cdms/exp/cmip2/ccc/Perturb.~l')
5 rlsf = f.variables['rls'l
6 ingrid = rlsf.getGridO
7 g = c~s.open~ataset(~/pcmdi/cdms/exp/cmi~i!/mri/~erturb.xml')
a outgrid = g.variables['rls'l.getGridO
9 regridfunc = Regriddercingrid. outgrid)

10 rlsnew = regridfunc(rlsf[:l)

Climate Data Management System 67

Regridding data

11 f.closeO
12 g.closeO

Line

2

3

4

5

6

7

8

9

10

Notes

Makes the CDMS module available.

Makes the Regridder class available from the regrid module.

Opens the input dataset.

Gets the variable object named \rlsn. No data is read.

Gets the input grid.

Opens a dataset to retrieve the output grid.

The output grid is the grid associated with the variable named trls’
in dataset g. Just the grid is retrieved, not the data.

Generates a regridder function regridfunc.

Reads all data for variable rlsf, and calls the regridder function on
that data, resulting in a Numeric array rlsnew.

3.2 regrid module

The regrid module implements the regridding functionality. Although
this module is not strictly a part of CDMS, it is designed to work with
CDMS objects. The Python command

from regrid import Regridder

makes the Regridder class available within a Python program. An instance
of Regridder is a function which regrids data from input to output grid.

68 Climate Data Management System

regridder functions

Table 3.1 Regridder Constructor

3.3 regridderfunctions

A regridder function is an instance of the Regridder class. The func-
tion is associated with an input and output grid. Typically its use is straight-
forward: the function is passed an input array and returns the regridded
array. However, when the array has missing data, or the input and/or output
grids are masked, the logic becomes more complicated.

Step 1: The regridder function first forms an input musk. This mask is either
two-dimensional or ‘n-dimensional’, depending on the rank of the user-sup-
plied mask.

Two-dimensional case:

*Let mask-l be the two-dimensional user mask supplied via the mask argu-
ment, or the mask of the input grid if no user mask is specified.

*If a missing-data value is specified via the missing argument, let the
implicit-mask be the two-dimensional mask defined as 0 where the first hori-
zontal slice of the input array is missing, 1 elsewhere.

*The input mask is the logical AND(mask-1, implicit-mask)

N-dimensional case: If the user mask is 3 or 4-dimensional with the
same shape as the input array, it is used as the input mask.

Climate Data Management System 69

Regridding data

Step 2: The data is then regridded. In the two-dimensional case, the input
mask is ‘broadcast’ across the other dimensions of the array. In other words,
it assumes that all horizontal slices of the array have the same mask. The
result is a new array, defined on the output grid. Optionally, the regridder
function can also return an array having the same shape as the output array,
defining the fractional area of the output array which overlaps a non-miss-
ing input grid cell. This is useful for calculating area-weighted means of
masked data.

Step 3: Finally, if the output grid has a mask, it is applied to the result array.
Where the output mask is 0, data values are set to the missing data value, or
1 .Oe20 if undefined.

Climate Data Management System

regridder functions

Table 3.2 Regridder fUnCtiOn

Climate Data Management System 71

Regridding data

3.4 Examples

Example: Create a uniform output grid.

1 #!/usr/local/bia/Dython
2 import cdms
3 from regrid import Regridder
4 f = cdms.openDataset('rls~cccger.nc8)
5 rlsf = f.variables['rls'I
6 ingrid = rlsf.getGrid()
7 outgrid = cdms.createIJniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
8 regridEUnc = Regriddertingrid, outgrid)
9 newrls = regridFunc(rlsf[:l, missing=rlsf.getMissing())

10 f.close()

Line Notes

4 Open a netCDF file for input.

7 Create a 4 x 5 degree output grid. Note that this grid is not associated
with a file or dataset

8 Create the regridder function

9 Read all data and regrid. The missing data flag is set explicitly.

Example: Get a mask from a separate file, and set as the input grid mask.

1 import cdms
2 from regrid import Regridder
3 cdms.setAutoReshapeMode('on')
4 f = cdms.openDataset(~so-cccger.nc')
5 sof = f.variables['so']
6 ingrid = sof.getGridO

72 Climate Data Management System

Examples

7
8
9

10
11
12
13
14

15
16
17

g = cdms.openDataset('rls-mriger.nc')
rlsg = g.variables['rls']
outgrid = rlsg.getGrid()
regridFunc = Regridder(ingrid,outgridI
h = cdms.openDataset('sft-ccc.nc']
sfth = h.variables['sft'l
sftArray = sfth[:]
outArray =
regridFunc(sof[:],missing=sof.getMissingO,mask=sftMask)
f.close()
g.close()
h.close(]

Line

3

6

9

10

13

14

Notes

Enable autoreshape mode. This removes singleton dimensions when
data is read from a file.

Get the input grid.

Get the output grid

Create the regridder function.

Get the mask.

Regrid with a user mask. The same thing could be accomplished by
setting the mask of ingrid via the setMask method.

Note: Although it cannot be determined from the code, both mask and
the input array sof are four-dimensional. This is the ‘n-dimensional’
case.

Example: Generate an array of zonal mean values.

1 f = cdms.openDataset(~rls.ccc~er.nc')
2 rlsf = f.variables('rls'l
3 ingrid = rlsf.getGridO
4 outgrid = cdms.createZonalGrid(ingrid)
5 regridFunc = Regridder(ingrid,outgrid)

Climate Data Management System 73

Regridding data

6 mean E regridRunc(rlsf[:l)
7 f.closeO

Line Notes

3 Get the input grid.

4 Create a zonal grid. outgrid has the same latitudes as ingrid, and a
singleton longitude dimension. CreateGlobalMeanGrid could be
used here to generate a global mean array.

5 Generate the regridder function.

6 Generate the zonal mean array.

Example: Regrid an array with missing data, and calculate the area-
weighted mean of the result.

1 from Numeric import *
. . .

2 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
3 outlatw, outlonw = outgrid.getWeightsO
4 outweights = outlatw[:,NewAxisl*outlonw
5 grid = var.getGrid()
6 sample = var[O,Ol
7 latw, lonw .= grid.getWeights()
0 weights = latw[:,NewAxis]*lonw
9 imnask = where(greater(absolute(sample),l.e15),0,1)

10 mean = add.reduce(ravel(inmask*weights*sample))/
add.reduce(ravel(inmask*weights))

11 regridmnc = Regriddercgrid, outgrid)
12 outsample, outmask = regridFunc(samnle, mask=inmask,

returnTuple=l)
13 outmean = add.reduce(ravel(outmask*outweights*outsample))/

add.reduce(ravel(outmask*outweights))

74 Climate Data Management System

Examples

Line

2

3

4

5

6

7-8

9

10

11

12

13

Notes

Create a uniform target grid.

Get the latitude and longitude weights.

Generate a 2-D weights array.

Get the input grid. var is a 4-D variable.

Get the first horizontal slice from var.

Get the input weights, and generate a 2-D weights array.

Set the 2-D input mask.

Calculate the input array area-weighted mean.

Create the regridder function.

Regrid. Because returnTuple is set to 1, the result is a tuple (dataAr-
ray, ma&Array).

Calculate the area-weighted mean of the regridded data. mean and
outmean should be approximately equal.

Climate Data Management System 75

Regridding data

76 Climate Data Management System

CHAPTER 4 Plotting CDMS data in
Python

4.1 Overview

Data read via the CDMS Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the CDAT reference manual. The vcs module provides
access to the functionality of the VCS visualization program.

Examples of plotting data accessed from CDMS are given below, as well as
documentation for the plot routine keywords.

4.2 Examples

In the following examples, it is assumed that variable PSI is dimen-
sioned (time, latitude, longitude). PSI is contained in the dataset named
'sample.ml'.

4.2.1 Example: plotting a horizontal grid
1 import cdms, vcs

2 cdms.setAutoReshapeMode('onr)

Climate Data Management System 77

Plotting CDMS data in Python

3 f = cdms.openDataset('sample-~1')
4 gsl = f.variablesI'psl'l
5 sample = pr[Ol
6 w=vcs.init()
7 w.setcolonnap('default')
8 w.plot(sample, variable=psl)
9 f .closeO

Notes:

Line

2

5

6

7

8

9

Notes

Remove singleton dimensions when data is read.

Get a horizontal slice, for the first timepoint.

Create a VCS Canvas w.

Set the default colormap.

Plot the data. By default, a boxfill plot of a horizontal lat-lon array is
generated. The variable PSI encapsulates information on the grid
coordinates, variable name, units, etc.

Close the file. This must be done after the reference to the persistent
variable PSI.

That’s it! The axis coordinates, variable name, description, units, etc. are
obtained from variable PSI.

What if the units are not explicitly defined for PSI, or a different description
is desired? plot has a number of other keywords.

78 Climate Data Management System

Examples

4.2.2 Example: using plot keywords.
w.plot(sample, variable=psl, units='mm/day', file-comment='High-

frequency reanalysis', long-nsme="Sea level pressure",
commentl="Sample plot", hm~="18:00:00", ymd="1978/01/01")

Notes:

l Keyword arguments can be listed in any order.

l Specific keywords take precedence over general keywords. In this example, the
units \mm/day* takes precedence over 9~1 .units.

4.2.3 Example: plotting a time-latitude slice
If the data to be plotted is not a lat-lon slice, the xaxis and yaxis key-

words are used to specify the axes:

. . .
1 ssm9 = 9s1[:,:,01
2 lat = psl.getLatitude()
3 time = psl.getTime()
4 w = vcs.init()
5 w.plot(samp, name='psl', xaxis=lat, yaxis=time)

Notes:

Line Notes

1 samp consists of all times, latitudes for longitude index 0

2 lat is the CDMS latitude axis object, not just the array. The xarrayl
yarray keywords can be used to specify a 1-D Numeric vector of
values, as an alternative. The advantage of using xaxis and yaxis is
that the plot routine can recognize the spatial orientation of the axes.

5 The variable keyword was not used here, so the name keyword
defines the identifier.

Climate Data Management System 79

Plotting CDMS data in Python

4.2.4 Example: plotting subsetted data

It is important to note that a data array read from CDMS does not
carry spatial coordinate information or other metadata with it, with the
exception of a missing data value. The array argument of plot is just
Numeric array, which can be read from a file or generated by a Numeric
operation. There may not be a persistent variable or axis associated with the
data a priori.

In the following example, the data corresponds to a proper subset of the
time axis. A new CDMS axis object is created, corresponding to the subset
retrieved.

. . .
1 Sam9 = 9s1[0:100,:,01
2 lat = psl.getLatitudeO
3 time = psl.getTimeO
4 w = vcs.init()
5 w.plot(sam9, name='psl'. xaxisdat, yaxis=time.subaxis(OrlOO))

Because the first 100 times are retrieved, S- does not correspond to the
dataset time axis, which contains all the time values. The subaxis method
creates a new axis object corresponding to the first 100 timepoints.

4.3 plot method

The plot method is documented in the CDAT Reference Manual. This
section augments the documentation with a description of the optional key-
word arguments.

The general form of the plot command is:

canvas.plot(array [, args] [,key=value [, key=vaZue [, . ..I]])

where:

l canvas is a VCS Canvas object, created with the vcs.init method.

l array is a Numeric array, having between two and five dimensions. The last
dimensions of the array is termed the ‘x’ dimension, the next-to-last the ‘y’
dimension, then ‘z’, ‘t’, and ‘w’. For example, if the array is three-dimensional,

80 Climate Data Management System

plot method

the axes are (z,y,x). If array is four-dimensional, the axes are (t,z,y,x), and so on.
(Note that the ‘t’ dimension need have no connection with time; any spatial axis
can be mapped to any plot dimension. For a graphics method which is two-
dimensional, such as boxfill, the y-axis is plotted on the horizontal, and the x-
axis on the vertical.

l args are optional positional arguments:

args := template-name, graphics-method, graphics-name
template-name: the name of the VCS template (e.g., ‘AMIP’)
graphics-method : the VCS graphics method (‘boxfill’)
graphics-name: the name of the specific graphics method (‘default’)

See the CDAT Reference Manual and VCS Reference Manual for a
detailed description of these arguments.

l key=value, . . . are optional keyword/value pairs, listed in any order. These are
defined in Table 4.1 on page 8 1.

Table 4.1 plot keywords

key type value

Climate Data Management System 81

Plotting CDMS data in Python

Table 4.1 plot keywords

kev tvue value

82 Climate Data Management System

plot method

Table 4.1 plot keywords

key type value

Climate Data Management System 83

Plotting CDMS data in Python

Climate Data Management System

CHAPTER 5 Climate Data Markup
Language (CDML)

5.1 Introduction

The Climate Data Markup Language (CDML) is the language
used to represent metadata in CDMS. CDML is based on the W3C
XML standard.

Climate Data Management System 85

Climate Data Markup Language (CDML)

. ,

Climate Data Management System

CHAPTER 6 CDMS Utilities

6.1 cdimport: Importing data into CDMS

Climate Data Management System 87

CDMS Utilities

88 Climate Data Management System

A
assignvalue

axis 32
variable 54

C
close

cdmsFile 39
dataset 45

copyAxis 39
copyGrid 40
createAxis

cdmsFile 3 I,40
dataset 31
transient IS, 3 1

CreateDataset 18, 39,43
createEqualAreaAxis 18
CreateGaussianAxis 19
CreateGenericGrid 19
CreateGlobalMeanGrid 19
CreateRectGrid

cdmsFile 40,46
dataset 45.46
transient 20,46

CreateLJniformGrid 20
CreateUniformLatitudeAxis 21
createUniformLongitudeAxis 21
createvariable 41.53
createvariablecopy 41
createZonalGrid 21

D
designatecircular 32
designateLatitude 32
designateLevel 33
designateLongitude 33
designateTime 33

G
getAxis 47,54
getBounds

axis 33
grid 47

getcalendar 34
getGrid 54
getLatitude

grid 47
variable 54

getLevel 54

Climate Data Management System 89

getLongitude
grid 47
variable 55

getMask 48
getMissing 55
getOrder

grid 48
variable 55

getPaths
dataset 45
variable 55

getRegion 56
getTemplate 56
getTime 56
getType 48
getvalue

axis 34
variable 56

getweights 48

I
isCircular 34
isLatitude 34
isLevel 34
isLinear 35
isLongitude 35
isTime 35

L
len 35,56

M
mapInterval 36
matchpattern 22

0
openDataset 23,39,43

P
plot method 80

R
regrid function 7 1
Regridder 69

S
searchpattern 24
searchpredicate 25

90 Climate Data Management System

setAutoBounds 26
setAutoReshapeMode 26
setBounds

axis 37
grid 49

setcalendar 37
setClassifyGrids 26
setMask 49
setType 49
subaxis 37
subGrid 50
subGridRegion 5 1
sync

cdmsFile 41
dataset 45

T

transpose 52
typecode

axis 37
variable 56

v
variable 8

Climate Data Management System

